IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016 393

In-Field Test for Permanent Faults in FIFO Buffers of NoC Routers
Bibhas Ghoshal, Kanchan Manna, Santanu Chattopadhyay, and Indranil Sengupta

Abstract—This brief proposes an on-line transparent test technique
for detection of latent hard faults which develop in firstinput first-
ouptput buffers of routers during field operation of NoC. The technique
involves repeating tests periodically to prevent accumulation of faults.
A prototype implementation of the proposed test algorithm has been
integrated into the router-channel interface and on-line test has been
performed with synthetic self-similar data traffic. The performance of
the NoC after addition of the test circuit has been investigated in terms
of throughput while the area overhead has been studied by synthesizing
the test hardware. In addition, an on-line test technique for the routing
logic has been proposed which considers utilizing the header flits of the
data traffic movement in transporting the test patterns.

Index Terms— FIFO buffers, in-field test, NoC, permanent fault,
transparent test.

I. INTRODUCTION

Over the last decade, network-on-chip (NoC) has emerged as a bet-
ter communication infrastructure compared with bus-based communi-
cation network for complex chip designs overcoming the difficulties
related to bandwidth, signal integrity, and power dissipation [1].
However, like all other systems-on-a-chip (SoCs), NoC-based SoCs
must also be tested for defects. Testing the elements of the NoC
infrastructure involves testing routers and interrouter links.

Significant amount of area of the NoC data transport medium
is occupied by routers, which is predominantly occupied by FIFO
buffers and routing logic. Accordingly, the probabilities of run-time
faults or defects occurring in buffers and logic are significantly
higher compared with the other components of the NoC. Thus, test
process for the NoC infrastructure must begin with test of buffers and
routing logic of the routers. In addition, the test must be performed
periodically to ensure that no fault gets accumulated.

The occasional run-time functional faults have been one of
the major concerns during testing of deeply scaled CMOS-based
memories. These faults are a result of physical effects, such as envi-
ronmental susceptibility, aging, and low supply voltage and hence are
intermittent (nonpermanent indicating device damage or malfunction)
in nature [2]. However, these intermittent faults usually exhibit
a relatively high occurrence rate and eventually tend to become
permanent [2]. Moreover, wear-out of memories also cause intermit-
tent faults to become frequent enough to be classified as permanent.
Thus, there is a need for online test technique that can detect the
run-time faults, which are intermittent in nature but gradually become
permanent over time.

A. Contribution

In this brief, we have proposed an online transparent test technique
for first-input first-output (FIFO) buffers and routing logic present

Manuscript received March 19, 2014; revised September 16, 2014 and
November 19, 2014; accepted January 10, 2015. Date of publication March 26,
2015; date of current version December 24, 2015.

B. Ghoshal and 1. Sengupta are with the Department of Computer
Science and Engineering, IIT Kharagpur, Kharagpur 721302, India (e-mail:
bibhas.ghoshal @gmail.com; isg@iitkgp.ac.in).

K. Manna is with the School of Information Technology, IIT Kharagpur,
Kharagpur 721302, India (e-mail: kanchanm @sit.iitkgp.ernet.in).

S. Chattopadhyay is with the Department of Electronics and Electrical
Communication Engineering, IIT Kharagpur, Kharagpur 721302, India
(e-mail: santanu@ece.iitkgp.ernet.in).

Digital Object Identifier 10.1109/TVLSIL.2015.2393714

within the routers of the NoC infrastructure. Our contributions are as
follows. A transparent SOA-MATS++ test generation algorithm has
proposed targeting in-field permanent faults developed in SRAM-
based FIFO memories and it has been utilized to perform online
and periodic test of FIFO memory present within the routers of the
NoC. In addition, we have also proposed an online test technique
for the routing logic that is performed simultaneously with the test
of buffers. The proposal involves two ways of utilizing the unused
portion of the header flits of the incoming data packets in transporting
the test patterns. First, deterministic test patterns for the routing
logic generated by Tetramax are placed in the unused fields of the
header flit and are transported during the normal cycle. Second,
the pseudorandom patterns in the synthetic data traffic used during
normal operation and arriving at the routing logic are considered
as test patterns. Fault coverage is estimated for either of the two
proposals.

B. Fault Models Considered for the Work

The run-time permanent faults considered in this brief are assumed
to be intermittent faults, which have become permanent over time.
Consequently, the fault models considered in this brief are that
of intermittent faults. The primary factors that lead to intermittent
faults are aging effects, such as time-dependent dielectric
breakdown (TDDB), electromigration, negative bias temperature
instability (NBTI), and hot carrier injection (HCI), as mentioned
in [3]. TDDB is a phenomena where the oxide underneath the gate
material of an MOSFET degrades over time resulting in a short
circuit, which are modeled as stuck-at-faults [4]. Electromigration
reduces interconnect conductivity with passage of time and leads to
open circuit [4]. The open circuits caused by electromigration are
modeled as stuck-open-faults. NBTI and HCI increase the threshold
voltage of transistors leading to decrease in mobility. As a result,
the performances of the memory core decreases bringing in read and
write failures. The write failures are modeled as transition faults,
while read failures are modeled as read disturb faults [5].

To summarize, the target fault models considered for this brief are
stuck-at fault, stuck-open fault, read disturb fault, and transition fault.
Detailed behavior of these faults can be found in [6].

II. RELATED WORK

As fault tolerance in NoC design has gained importance among
research community, a number of papers have been published
covering different aspects of fault tolerance, such as failure
mechanisms, fault modeling, diagnosis, and so on. A detailed survey
summarizing the research work in these papers has been provided
in [3]. Over the years, researchers have proposed a number of Design-
For-Testability (DFT) techniques for NoC infrastructure testing (test-
ing routers as well as NoC interconnect) [7] and for NoC based core
testing [8]. Built-in self test (BIST)-based techniques have also been
used for testing routers as well as NoC interconnect, such as [8].
A recent paper on NoC and router testing in [9] provides a summary
of the DFT techniques employed for testing NoC interconnects and
routers in particular. In addition to novel test architectures, fault
tolerant routing algorithms have also been proposed [10].

FIFO buffers in NoC infrastructure are large in number and spread
all over the chip. Accordingly, probability of faults is significantly

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

394 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

higher for the buffers compared with other components of the router.
Both online and offline test techniques have been proposed for test of
FIFO buffers in NoC. The proposal in [11] is an offline test technique
(suitable for the detection of manufacturing fault in FIFO buffers)
that proposes a shared BIST controller for FIFO buffers. Online
test techniques for the detection of faults in FIFO buffers of NoC
routers have been proposed in [12]. However, the technique considers
standard cell-based FIFO buffers, while we consider SRAM-based
FIFO designs. Thus, faults considered in this brief are different from
those targeted in [12].

To the best of our knowledge, no work has been reported in the
literature that proposes online test of SRAM-based FIFO buffers
present within routers of NoC infrastructure. Thus, we surveyed
online test techniques for SRAM-based FIFOs in general. The survey
revealed that SRAM based FIFOs are tested using either of the
following two approaches, dedicated BIST approach as proposed by
Barbagallo et al. in [13] and or distributed BIST proposed by Grecu et
al. in [11]. However, both dedicated and distributed BIST approaches
being offline test techniques fail to detect permanent faults, which
develop over time.

III. PROPOSED TRANSPARENT TEST GENERATION

The faults considered in this brief, if applied for SRAMs or
DRAMSs, can be detected using standard March tests [6]. However,
if the same set of faults are considered for SRAM-type FIFOs,
March test cannot be used directly due to the address restriction in
SRAM-type FIFOs mentioned in [14] and thus we were motivated to
choose single-order address MATS++4 test (SOA-MATS++) [14]
for the detection of faults considered in this brief. The word-
oriented SOA-MATS++ test is represented as {$ (wa); 1 (ra, wb);
} (rb, wa)}; §$ (ra)} where, a is the data background and b is the
complement of the data background. 1 and | are increasing and
decreasing addressing order of memory, respectively. $ means
memory addressing can be increasing or decreasing. Application of
SOA-MATS++ test to the FIFO involves writing patterns into the
FIFO memory and reading them back. As a result, the memory
contents are destroyed. However, online memory test techniques
require the restoration of the memory contents after test. Thus,
researchers have modified the March tests to transparent March
test [15] so that tests can be performed without the requirement of
external data background and the memory contents can be restored
after test. We have thus transformed the SOA-MATS-++- test to trans-
parent SOA-MATS++ (TSOA-MATS++) test that can be applied
for online test of FIFO buffers. The transparent SOA-MATS++ test
generated is represented as {1 (rx, wx, rx, wx, rx)}.

The operations performed during the test represent three phases of
the test, namely, invert phase, restore phase, and read phase. The
first two operations form a read write pair (rx, wx) representing the
invert phase where the initial content (content before start of test) of
the FIFO buffer location under test (lut) is read and its complement
is written back to the same location. The invert phase is followed
by restore phase involving the operations (rx, wx), where the content
of [ut are read and reinverted. At this point of the test, the contents
of lut have been flipped twice to get back the original content. The
last phase, (rx) involves reading the content of /ut without any write
operation to follow.

A. Test Algorithm

The algorithmic interpretation of the transparent SOA-MATS++
test is presented in Algorithm 1. It describes the step-by-step proce-
dure to perform the three phases of the transparent SOA-MATS++
test for each location of the FIFO memory. The target location for test
is given by the loop index i that varies from O to N — 1, where N is the

Algorithm 1 Transparent SOA-MATS++ Test Algorithm
Require: N = number of rows of the FIFO memory

1: 1+ 0 /* memory address pointer */
2: while (: < N —1) do
3§70 /* test cycle counter */

4: while (j <2) do

5: temp < read(i);

6: if (= 0) then

7: original < temp;
8: write(i, ltemp);
9: else

10: if (= 1) then

11: result < compare(temp, original);
12: write(i, ltemp);

13: end if

14: else

15: result < compare(temp, original);
16: end if

17: j—J+1

18: end while
19: i1+ 1
20: end while

number of locations in the FIFO memory. In other words, i represents
the address of the FIFO memory location presently under test.
For each location, the three test runs are performed during three
iterations of the loop index j.

For a particular FIFO memory location (present value of i), the
first iteration of j (address runl) performs the invert phase, where
the content of the FIFO location is inverted. The invert test phase
involves reading the content of [ut into a temporary variable temp
and then backing it up in original. Then, the inverted content of temp
is written back to lut. At this point, the content of [uf is inversion of
content of original.

In the next iteration of j (address run2), the restore phase is
performed. The content of lut is reread into temp and compared
with the content of original. The comparison should result in all 1’s
pattern. However, deviation from the all 1’s pattern at any bit position
indicates fault at that particular bit position. Next, the inverted content
of temp is written back to lut. Thus, the content of [uf, which were
inverted after the first iteration get restored after the second.

The third iteration of j performs only a read operation of luf, where
the content of /ut is read into femp and compared with the contents
of original. At this stage of the test, all 0’s pattern in the result
signifies fault free location, while deviation at any bit position from
all 0’s pattern means fault at that particular bit position. The last read
operation ensures the detection of faults, which remained undetected
during the earlier two test runs. At the end of the three test runs
(iterations of j), the loop index i is incremented by one to mark the
start of test for the next location.

B. Fault Coverage of the Proposed Algorithm

The transparent SOA-MATS++ algorithm is intended for test of
stuck-at fault, transition fault, and read disturb fault fault tests devel-
oped during field operation of FIFO memories. The fault coverage of
the algorithm is shown in Fig. 1. In both the figures, the word size of
FIFO memory is assumed to be of 4 bits. The text in italics against
the arrows indicates the operation performed, while the text in bold
font corresponds to the variables used in Algorithm 1.

As shown in Fig. 1, assume the data word present in /ut be 1010.
The test cycles begin with the invert phase (memory address pointer j
with O value) during which the content of location addressed is read
into temp and then backed up in the original. The data written back to

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016 395

B . R PR

Faulty bt

Faulty value

101|Iut

lut| 1010

temp «{ read(J)

tcmp| 1010 w!”?“p) 1101 |temp

: comparf(temp,original)

temp - read(J)

original + temp

original :
fo[d111

result

faulty bit '
detected

Fig. 1. Fault detection during invert phase and restore phase of the transparent
SOA-MATS++ test.

lut is the complement of content of temp. Thus, at the end of the cycle,
the data present in femp and original is 1010, while lut contains 0101.
Assume a stuck-at-1 fault at the most significant bit (MSB) position
of the word stored in luz. Thus, instead of storing 0101, it actually
stores 1101 and as a result, the stuck-at-fault at the MSB gets
excited.

During the second iteration of j, when [ut is readdressed, the data
read into femp is 1101. At this point, the data present in femp and
original are compared (bitwise XORed). An all 1’s pattern is expected
as result. Any O within the pattern would mean a stuck-at fault at
that bit position. This situation is shown in Fig. 1, where the XOR
of 1010 and 1101 yields a O at the MSB position of the result
indicating a stuck-at-fault at the MSB position. However, for cases
where the initial data for a bit position is different from the faulty bit
value, the stuck-at-fault cannot be detected for the bit position after
the restore phase of the test. It thus requires one more test cycle to
excite such faults.

IV. IMPLEMENTATION OF THE TEST ON
FIFO BUFFERS OF NOC ROUTERS

In this section, we present the technique used for implementing the
proposed transparent SOA-MATS4-+4- test on a mesh-type NoC. Data
packets are divided into flow control units (flits) and are transmitted
in pipeline fashion [1]. The flit movement in a mesh-type NoC
infrastructure considered for this work is assumed to require buffering
only at the input channels of routers. Thus, for a data traffic movement
from one core to another, the online test is performed only on the
input channel FIFO buffers, which lie along the path. The buffers
operate in two modes, the normal mode and the fest mode. The
normal mode and test mode of operation of a FIFO buffer are
synchronized with two different clocks. The clock used for test
purpose (referred as test_clk in this brief) is a faster clock compared
with the clock required for normal mode (router clock).

The FIFO buffers are allowed to be operative in normal mode for
sufficient amount of time before initiating their test process. This
delay in test initiation provides sufficient time for run-time intermit-
tent faults developed in FIFO buffers to transform into permanent
faults. The test process of a targeted FIFO buffer is initiated by a
counter, which switches the FIFO buffer from normal mode to test
mode. The switching of FIFO buffers from normal mode to test mode
occurs after a certain period of time without caring about the present
state of the FIFO buffer. It may be argued that at the instant of
switching, the buffer may not be full, and as a result not all locations
would be tested during the test cycle. However, test initiation after
the buffer gets full would cause the following problems. First, wait

test_data

FIFO
MEMORY testotrl 7
CIRCUIT]

test_ctrl

test_clk

data

data infrom
input channel

Normal
Write Address|
Generator

Test
Read Address
Generator

Normal
Read Addres:
Generator

Te
Writ
Gen

TEST CIRCUIT

o test full
test ctrl —| t— o fault/ faulty

test_clk —|

| —»test data

Fig. 2. (a) Hardware implementation of the test process for the FIFO buffers.
(b) Implementation of test circuit.

for the buffer to get full would unnecessarily delay the test initiation
process and would allow faults to get accumulated. Second, test of
the entire buffer would prolong the test time and would negatively
affect the normal mode of operation.

A test burst involves series of test read and write cycles. It requires
three read and two write cycles, or in other words three cycles of
the faster test clock to perform a transparent SOA-MATS++ test
on a single location of a FIFO buffer. It may be argued that during
a test burst, not all FIFO buffer locations are tested or a test of
a location can get interrupted. These two problems can be avoided
by periodically testing the FIFO buffers. Periodic testing of a FIFO
buffer allows test of a different set of locations of the FIFO buffer in
each test burst. Every time the buffer is switched to test mode, the
normal process gets interrupted. The FIFO memory location currently
addressed in normal mode, at the instant of switching, becomes
the target location for test. Since normal operation is interrupted at
different instants in different test bursts, the locations tested in each
burst would be different. Thus, repeating the test bursts for a number
times on a FIFO buffer would cover the test of each location as
the number of locations in a FIFO buffer is few. Moreover, periodic
testing prevents accumulation of fault in the buffer.

A. Test Architecture

The FIFO buffer present in each input channel of an NoC router
consists of a SRAM-based FIFO memory of certain depth. During
normal operation, data flits arrive through a data_in line of the
buffer and are subsequently stored in different locations of the FIFO
memory. On request by the neighboring router, the data flits stored are
passed on to the output port through the data_out line. Fig. 2(a) shows
the FIFO memory with data_in and data_out line. To perform the
transparent SOA-MATS++ test on the FIFO buffer, we added a test
circuit, few multiplexers and logic gates to the existing hardware, as
shown in Fig. 2(a). The read and write operations on the FIFO buffer
are controlled by the read enable and write enable lines, respectively.
The multiplexers mu6 and mu7 select the read and write enable
during the normal and test process. During normal operation when
the test_ctrl is asserted low, the internal write and read enable lines,
wen_int and ren_int, synchronized with the router clock, provide the
write and the read enable, respectively. However, during test process,
the write enable and read enable are synchronized with the test clock.
As mentioned earlier, the read and write operations during test are

396 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

performed at alternate edges of a test clock. The read operations are
synchronized with the positive edges, while the write_clk is obtained
by inverting the test clock. In test mode (test_ctrl high), the test
read and write addresses are generated by test address generators
implemented using gray code counters similar to the normal address
generation. Muxes m4 and mS5 are used to select between normal
addresses and test addresses.

Consider the situation when the FIFO buffer is in normal mode with
flits being transferred from the memory to the data_out line. After a
few normal cycles, the fest_ctrl is asserted high, switching the buffer
to test mode. As long as the buffer is in test mode, no external data
is allowed to be written to the buffer, or in other words, the buffer
is locked for the test period. As a result, the input data line for the
FIFO memory is switched from the external data_in line to test_data
line available from the test circuit. At the switching instant, the flit
which was in the process of being transferred to the data_out line
is simultaneously read into the 7est Circuit. However, a one clock
cycle delay is created for the flit to move to the data_out line. This
delay ensures that the flit is not lost during the switching instant and
is properly received by the router, which requests for it. The single
cycle delay in the path of the traveling flit is created by the D-type
flip-flop and the multiplexer m3, as shown in Fig. 2(a). The flit, which
is read in the test circuit, is stored in a temporary register femp and
the test process begins with this flit.

To avoid packet loss during testing, the FULL signal of the FIFO
is asserted high so that neighboring routers can be prevented from
transferring packets to the corresponding router. However, applying
such technique increases the network latency as reflected in the results
shown in Section V.

V. EXPERIMENTAL RESULTS

A prototype implementation of the proposed test circuit has been
integrated into the router-channel interface and online transparent
SOA-MATS++ test is performed with synthetic self-similar data
traffic. The router design considered in this brief has been taken
from [16].

A. Area Overhead Estimation of the Test Hardware

The proposed hardware for the test circuit has been described in
Verilog HDL and synthesized using Synopsys Design Vision support-
ing 90-nm CMOS technology. The total area estimate of different
modules in the test circuit after synthesis has been estimated to be
~1720 ,umz, while the area of the FIFO buffer (having depth = 6)
has been estimated as 4074 ,umz. Thus, a significant amount of 42%
area overhead results due to inclusion of the test circuit. However,
the overhead when estimated with respect to the router area reduces
to 8% and still further to 2% when estimated with respect to the area
of the entire NoC.

B. Throughput Estimation

For evaluating the performance of an NoC-based network, a
system C-based cycle-accurate NoC simulator [16] has been utilized.
Synthetic self-similar traffic has been used during simulation, guided
by the communication requirement of cores in the application. The
simulator has been utilized to compute the throughput of the network
with and without the test circuit. Each simulation has been run for
200000 clock cycles. In this brief, the definition of throughput and
network latency considered is same as in [16]. For a mesh-type
NoC of size 4 x 8, the throughput for a FIFO buffer (depth = 6)
without including the test circuit has been estimated to be 0.281.
Then, we tried to investigate the effect on overall throughput by
including the test circuit within the routers and performing tests at

periodic intervals. When the periodicity of test is 20000 ms, the
throughput has been estimated to be 0.280, while it drops by 5.3%
and the network latency increases by 4.8% in case the FIFO memory
is tested after every 5000-ms period. It may be concluded from
the results that if online transparent March tests are frequently
performed on FIFO memory, the overall throughput of the NoC
decreases, while the network latency increases due to interruption of
packet transfer. However, delaying the periodicity of test results in
throughput value comparable with result obtained when no tests were
performed.

VI. PROPOSAL FOR TEST OF ROUTING LOGIC

The other part of the router, besides the buffers, vulnerable to
run-time permanent faults is the routing logic. In this section, we
propose an online test proposal for the routing logic that utilizes
the data packets for testing and thus overcomes the need for test
access mechanism. Since the router design considered for this brief
is taken from [16], both flit size and link width equal to 32-bit as used
in [16]. For the header flit, after allocation of address bits (source and
destination) and bits for virtual channel selection, some fields in the
header flit remain unused. Our proposal is to utilize these unused
fields for test pattern encoding. An automatic test pattern generation
tool generates deterministic offline test patterns for the routing logic.
Once the set of test patterns are available, each pattern can be placed
in the unused fields of the header flit. If the size of the test pattern
does not fit the size of the available field size in a single header,
the test pattern is adjusted in two header flits. In such a situation,
it requires two test cycles before the test pattern reaches the routing
logic. The test patterns are carried to the routing logic by the NoC
infrastructure during normal operation and are applied for testing
during the test mode. The test of the routing logic is simultaneously
performed with test of the FIFO buffers during the test mode when
the normal operation of the router remains suspended.

To validate our proposal, the router has been synthesized using
Design Vision supporting 90-nm technology and then Tetramax has
been used to generate deterministic test patterns for the synthesized
netlist. A total of 39 test patterns have been generated covering
242 faults for 100% fault coverage. Each pattern is of size 41 bits,
which required two test cycles for transporting the test patterns.
Thus, in total, 78 test cycles have been required for test of routing
logic. We have also experimented with an alternate proposal of
using pseudorandom patterns for test. Instead of using deterministic
test patterns, we utilize the pseudorandom synthetic data traffic
used during normal operation. Similar to the earlier proposal, the
pseudorandom bits in each header flit have been treated as test
patterns and have been applied to the routing logic. Fault simulation
performed on the routing logic wusing the pseudorandom
patterns utilizing a standard fault simulator provides 60% fault
coverage.

VII. CONCLUSION

In this brief, we have proposed a transparent SOA-MATS-++
test generation algorithm that can detect run-time permanent faults
developed in SRAM-based FIFO memories. The proposed transparent
test is utilized to perform online and periodic test of FIFO memory
present within the routers of the NoC. Periodic testing of buffers
prevents accumulation of faults and also allows test of each location
of the buffer. Simulation results show that periodic testing of FIFO
buffers do not have much effect on the overall throughput of the NoC
except when buffers are tested too frequently. We have also proposed
an online test technique for the routing logic that is performed
simultaneously with the test of buffers and involves utilization of
the unused fields of the header flits of the incoming data packets

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL.

for test pattern encoding. As future work, we would like to modify
the proposed FIFO testing technique that will allow incoming data
packets to the router under test without interrupting the test.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. 38th Annu. Design Autom. Conf., 2001,
pp- 684-689.

A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni,
“Threshold-based mechanisms to discriminate transient from intermittent
faults,” IEEE Trans. Comput., vol. 49, no. 3, pp. 230-245, Mar. 2000.
M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for fault
tolerance in networks-on-chip,” ACM Comput. Surv., vol. 46, no. 1,
pp- 1-38, Jul. 2013, Art. ID 8.

S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency:
New design paradigm for the nanoscale era,” Proc. IEEE, vol. 98, no. 10,
pp- 1718-1751, Oct. 2010.

S. Borri, M. Hage-Hassan, L. Dilillo, P. Girard, S. Pravossoudovitch,
and A. Virazel, “Analysis of dynamic faults in embedded-SRAMs:
Implications for memory test,” J. Electron. Test., vol. 21, no. 2,
pp. 169-179, Apr. 2005.

M. Bushnell and V. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits (Frontiers in Electronic
Testing). New York, NY, USA: Springer-Verlag, 2000.

D. Xiang and Y. Zhang, “Cost-effective power-aware core testing
in NoCs based on a new unicast-based multicast scheme,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 1,
pp. 135-147, Jan. 2011.

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

24, NO. 1, JANUARY 2016 397

K. Petersen and J. Oberg, “Toward a scalable test methodology for
2D-mesh network-on-chips,” in Proc. Design, Autom., Test Eur. Conf.
Exhibit., Apr. 2007, pp. 1-6.

D. Xiang, “A cost-effective scheme for network-on-chip router and
interconnect testing,” in Proc. 22nd Asian Test Symp. (ATS), Nov. 2013,
pp. 207-212.

M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen,
“Minimal-path fault-tolerant approach using connection-retaining struc-
ture in networks-on-chip,” in Proc. 7th IEEE/ACM Int. Symp. Netw.
Chip (NoCS), Apr. 2013, pp. 1-8.

C. Grecu, P. Pande, B. Wang, A. Ivanov, and R. Saleh, “Methodologies
and algorithms for testing switch-based NoC interconnects,” in Proc.
20th IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., Oct. 2005,
pp. 238-246.

M. R. Kakoee, V. Bertacco, and L. Benini, “A distributed and topology-
agnostic approach for on-line NoC testing,” in Proc. 5th ACM/IEEE Int.
Symp. Netw. Chip, May 2011, pp. 113-120.

S. Barbagallo et al., “A parametric design of a built-in self-test FIFO
embedded memory,” in Proc. IEEE Int. Symp. Defect Fault Tolerance
VLSI Syst., Nov. 1996, pp. 221-229.

A. J. van de Goor and Y. Zorian, “Functional tests for arbitration
SRAM-type FIFOs,” in Proc. 1st Asian Test Symp. (ATS), Nov. 1992,
pp. 96-101.

M. Nicolaidis, “Theory of transparent BIST for RAMS,” IEEE Trans.
Comput., vol. 45, no. 10, pp. 1141-1156, Oct. 1996.

S. Kundu, J. Soumya, and S. Chattopadhyay, “Design and eval-
uation of mesh-of-tree based network-on-chip using virtual chan-
nel router,” Microprocess. Microsyst., vol. 36, no. 6, pp. 471-488,
Aug. 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

